Extraction of rules from discrete-time recurrent neural networks
نویسندگان
چکیده
منابع مشابه
Extraction of rules from discrete-time recurrent neural networks
Absa'act--The extraction o f symbolic knowledge from trained neural networks and the direct encoding o f (partial) knowledge into networks prior to training are important issues. They allow the exchange o f information between symbolic and connectionist knowledge representations. The focas o f this paper is on the quality o f the rules that are extracted from recurrent neural networks. Discrete...
متن کاملFINITE-TIME PASSIVITY OF DISCRETE-TIME T-S FUZZY NEURAL NETWORKS WITH TIME-VARYING DELAYS
This paper focuses on the problem of finite-time boundedness and finite-time passivity of discrete-time T-S fuzzy neural networks with time-varying delays. A suitable Lyapunov--Krasovskii functional(LKF) is established to derive sufficient condition for finite-time passivity of discrete-time T-S fuzzy neural networks. The dynamical system is transformed into a T-S fuzzy model with uncertain par...
متن کاملRule extraction from recurrent neural networks
This thesis investigates rule extraction from recurrent neural networks, which takes the form of automated construction of models of an underlying network. Typically the models are expressed as finite state machines and they should mimic the network while being more intelligible. It is argued that rule extraction allows a deeper and more general form of analysis than other, more or less ad hoc,...
متن کاملRethinking Rule Extraction from Recurrent Neural Networks
We will in this paper identify some of the central problems of current techniques for rule extraction from recurrent neural networks (RNN-RE). Then we will raise the expectations of future RNN-RE techniques considerably and through this, hopefully guide the research towards a common goal. Some preliminary results based on work in line with these goals, will also be presented.
متن کاملGlobal Asymptotic Stability of Discrete-Time Recurrent Neural Networks
This paper presents new analytical results on the global asymptotic stability for the equilibrium states of a general class of discrete-time recurrent neural networks (DTRNNs) described by using a set of nonlinear di erence equations. We provide a few suÆcient conditions for the global asymptotic stability of DTRNNs. The resulting criteria include diagonal stability and nondiagonal stability. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neural Networks
سال: 1996
ISSN: 0893-6080
DOI: 10.1016/0893-6080(95)00086-0